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LOOP CURRENT SPIN—OFF EDDIES, SLOPE CURRENTS AND DISPERSAL 
OF REEF FISH LARVAE FROM THE FLOWER GARDENS NATIONAL MARINE 
SANCTUARY AND THE FLORIDA MIDDLE GROUNDS

Donald. R. Johnson*1, Harriet M. Perry1, Guillermo Sanchez—Rubio1 and Mark A. Grace2 
1Center for Fisheries Research and Development, School of Ocean Science and Technology, University of Southern Mississippi, 703 East Beach 
Drive, Ocean Springs, MS 39564; 2National Marine Fisheries Service/NOAA, Southeast Fisheries Center, 309 Fredrick Street, Pascagoula, MS 
39567; *Corresponding author, email: Donald.r.johnson@usm.edu

AbstrAct: Large energetic spin—off eddies from Loop Current intrusions into the Gulf of Mexico play a major role in water exchange between the 
continental shelf and the deep basin in the northern Gulf. Reef fish larvae, spawned on the outer shelf and planktonic during their early life history, are 
broadly dispersed by this mechanism, but may be lost to the cohort by transport away from suitable settlement habitat. In this study, satellite altimeter 
data—assimilative ocean model currents (HYCOM) from 2003—2015 are used to calculate kinetic energy of the mixed layer over the upper continental 
slope (200 m —1000 m) due to eddy interactions with the shelf and to track the dispersal of larvae spawned during core summer (June—August) season. 
Over the 13 year model period, dispersal into the deep basin from the Flower Gardens National Marine Sanctuary averaged 63.5%, with a high of 
90.8% and a low of 34.6%. Dispersal from the Florida Middle Grounds averaged 9.5%, with a high of 23.1% and a low of 0.6%. Temporal dispersal 
of larvae was associated with trends in turbulent kinetic energy and mean kinetic energy over the continental slope, and varied with the North Atlantic 
Oscillation Index. Between 2010 and 2011, mean kinetic energy replaced turbulent kinetic energy as the dominant dispersal mechanism.

Key words: kinetic energy, larval transport, Gulf of Mexico, climate variation, model. 

IntroductIon

Large offshore eddies in the northern Gulf of Mexico 
(GOM) induce water exchanges between the continental 
shelf and the deep basin with potential impact on disper-
sal of planktonic larvae from reef fish endemic to the shelf 
(Lugo—Fernández 1998, Lugo—Fernández et al. 2001). How-
ever, these eddy—induced exchanges across the shelf break are 
highly variable in both location and time as they are driven by 
seasonal and inter—annual variations in Loop Current (LC) 
intrusions and the subsequent westward migration pathways 
of spin—off eddies (Vukovich 2007, 2012). The objective of 
this study is to evaluate this important driver of larval disper-
sal from selected reefs in the northern GOM and its variation 
over a 13 year period. The long—term objective is to provide a 
greater basis for understanding effects of climate changes on 
important fishery resources of the GOM.

The dominant oceanographic features in the deep basin 
of the GOM are the LC and its spin—off eddies (Figure 1A). 
As part of the North Atlantic western boundary current, 
the LC intrudes into the GOM through the Yucatan Chan-
nel, penetrating far northward before looping back and exit-
ing through the Straits of Florida. At times, the head of the 
loop bends back on itself and detaches from the main flow, 

FIGURE 1. Maps of the Gulf of Mexico. A. Satellite thermal image on 5 
March 2006 showing intruding Loop Current and a spin—off eddy. Bathy-
metric contours of 200 m and 1000 m depth define the upper continental 
slope. Image credit to CCAR, University of Colorado. B. Study setting. Red 
dots represent the Flower Gardens National Marine Sanctuary (FGNMS; 3 
sites) and the Florida Middle Grounds (FMG). Bathymetric contours are 200 
m and 1000 m depth. The upper slope areas fronting the 2 locations are 
where comparative current energy was averaged yearly.
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creating a large spin—off eddy. Baroclinic instability appears 
to be responsible for the detachment and eddy formation 
(Hurlburt and Thompson 1980), making the process diffi-
cult to predict. From analysis of satellite thermal imagery and 
altimetry, eddy detachment occurs from 3—18 months with 
most detachments occurring in summer and winter (Vukov-
ich 2007). 

Spin—off eddies are large (300—400 km diameter) and 
energetic (1—2 m/s). Under the influence of the earth’s rota-
tion, they migrate from the central—east basin where they are 
formed to the western basin along a path partly dependent on 
the latitude of separation (Vukovich 2007, Lindo—Atichati et 
al. 2012). Both cyclonic and anti—cyclonic eddies are formed 
around the perimeter where there is strong horizontal cur-
rent shear. If detachment occurs far to the north, the path of 
the spin—off eddy and its attendant eddies interact with the 
upper continental slope (Hamilton et al. 1999, Ohlmann et 
al. 2001, Teague et al. 2013) with resultant exchange of water 
between the shelf and deep basin. The principal impact is 
felt along the outer continental shelf from about 90°W (Mis-
sissippi Delta) westward, although attendant eddy exchange 
with the shelf has been observed east of this longitude (Niiler 
1976, Huh et al. 1981). The LC itself has been noted to inter-
act with peninsular Florida’s outer shelf (Paluszkiewicz et al. 
1983, He and Weisberg 2003) as it flows southward toward 
its exit into the Straits of Florida. 

The shelf/basin coupling draws shelf spawned ichthyo-
plankton into deep water where they may be spread over 
considerable distances (Johnson et al. 2013). It may also be 
a source for biologically coupling with the Caribbean and 
a pathway for invasive species passing through the Carib-
bean (Johnson et al. 2005, Johnson and Perry 2008). Larvae 
spawned on the outer shelf are vulnerable to entrainment in 
the eddy—forced exchanges (Lugo—Fernández 1998, Hanisko 
and Lyczkowski—Shultz 2003), resulting in transport to wa-
ters over the deep basin where mortality is likely to be higher 
and where return to preferred habitat (Hare et al. 2002) is 
possible but difficult. Eddy forcing can also enhance along-
shore currents on the outer shelf with subsequent dispersal 
to distant habitat. 

Direct exchanges between the continental shelf and the 
deep basin in the northern GOM have been calculated using 
satellite radar altimetry (Ohlmann et al. 2001). The method 
involved computing the convergence of turbulent kinetic en-
ergy along the upper slope of the continental rise and de-
termining onshore/offshore flow. In this study, we build on 
the Ohlmann et al. 2001 foundation. Variations in anoma-
lous (turbulent) kinetic energy and the kinetic energy of the 
seasonal mean over the upper slope region were examined 
for a 13 year period using currents from a satellite altimeter 
data—assimilative ocean model. As a metric of the impact 
of this energy, larval dispersal into the deep basin from the 
broadcast spawn of reef fish on the outer shelf, using a simple 

life history stratagem, was tracked and related to temporal 
measures of energy over the upper slope. 

MAterIAls And Methods

Study Area
The Flower Gardens National Marine Sanctuary 

(FGNMS; http://flowergarden.noaa.gov) is formed around 
three ancient salt domes on the mid to outer continental 
shelf in the GOM (Figure 1B). The sanctuary consists of 
East Flower Garden Bank (EFG), West Flower Garden Bank 
(WFG) and Stetson Bank (ST). EFG and WFG are located 

~185 km offshore of the Texas coast and rise from 100—140 
m water depth to within 16—18 m of the surface. These 2 
banks were designated as a National Marine Sanctuary in 
1992 and contain the northern—most living hard coral in the 
USA. Stetson Bank, located ~125 km offshore with its base 
in water depth of roughly 55 m, was added to the FGNMS 
in 1996. The Sanctuary provides important habitat for com-
mercial reef fish. The nearness of the FGNMS to the conti-
nental shelf edge (defined herein as the 200 m isobath) raises 
concerns about natal retention of broadcast spawned larvae 
and the potential for loss from natal habitat due to sporadic 
eddy induced water exchanges with the deep basin.

The Florida Middle Grounds (FMG) was designated a 
Habitat Area of Particular Concern (HAPC; www.habitat.
noaa.gov) by the Gulf of Mexico Fishery Management in the 
1980s. The FMG is a prehistoric coral—reef complex with 
high and low relief limestone ridges (Coleman et al. 2004) 
lying ~150 km off the northwest coast of peninsular Florida 
(Figure 1B). Sporadic water exchanges (Niiler 1976; Palusz-
kiewicz et al. 1983; Coleman et al. 2004) with the deep basin 
impact this ecosystem and raise questions about planktonic 
larval connections across the GOM as well as with the Ca-
ribbean. Like the FGNMS, it provides important habitat for 
commercial as well as recreational reef fishes. Although there 
are many similarities between the FGNMS and the FMG, 
the difference in location with respect to the offshore eddies 
that drive shelf/basin exchanges can be significant.

Model
Currents were obtained from archived runs of the Hybrid 

Coordinate Ocean Model (HYCOM; Bleck 2002) from 2003 
through 2015 and applied to both calculations of kinetic en-
ergy and larval dispersal. The GOM HYCOM is a 1/25th 
degree (~3—4 km) model with 27 levels in the vertical. The 
model dynamically changes coordinate systems as it crosses 
from deep basin to shallow waters, providing a more reliable 
transition over the continental slope. The GOM model is 
nested in a 1/12th degree global model which allows for ener-
gy exchange across external boundaries. It incorporates tides, 
climatological river outflow and satellite altimetry measure-
ments of sea surface height. Atmospheric forcing is from the 
Navy Operational Global Atmospheric Prediction System 
(NOGAPS). Satellite altimeter data assimilation (Kantha 
and Clayson 2000, Fox et al. 2002) is important in that it 
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phase locks (time and location) the mod-
el to real ocean events such as location of 
the LC and its spin—off eddies. 

Due to strong geoid variations across 
the upper slope and shelf combined 
with satellite orbital uncertainties, sat-
ellite altimeter assimilation in the HY-
COM model is only included where 
water depths are > 400 m (Cummings 
and Smedstadt 2013). Eddy events, con-
strained on the upper slope with altim-
etry, are propagated onto the continental 
shelf by the model equations of motion. 
Model equations also propagate altimeter 
information into the areas between sparse nadir tracks. 

Although yet to be documented, it is expected that a dis-
tance scale of one internal Rossby radius of deformation, R

d
 

~40 km in the northern GOM (Chelton et al. 1998), can be 
used as a basic minimum measure of eddy event influence 
on the shelf. In a comparable study, Muscarella et al. (2015) 
found that assimilation of drifters into a model of the GOM 
constrained the model within a distance scale of 40—60 km, 
suggesting that this scaling may be appropriate. The present 
study involves time scales of one month (larval dispersal) to 4 
months (eddy energy). This mitigates somewhat the reliance 
on individual events for both dispersal and energy determi-
nation and focuses more properly on statistical metrics.

For both larval dispersal and determination of kinetic en-
ergy, currents were averaged over a mixed layer of 30 m depth 
(Muller—Karger et al. 2015; ~15 m—40 m). Kinetic energy in 
ambient currents and kinetic energy associated with spin—off 
eddies were separated to form the kinetic energy of the mean 
(MKE) and turbulent kinetic energy anomaly (TKE):

East component: 

North component: 

Where: ;

MKE )
TKE ) 

In practice, MKE and TKE were generated at each model 
grid point for each year of the study, with water density, fac-
tor of 2 and volume dropped as non—varying components. 
For simplicity, MKE and TKE are defined in units of m2/s2. 
To generate yearly time series of MKE and TKE for compari-
son with larval dispersal, these parameters were produced 
at each model grid point, but averaged over the upper slope 
between boundaries shown in Figure 1B. 

In order to isolate the impact of LC eddies on energet-
ics of the continental slope region, the TKE anomaly was 
calculated for the months of June—September, when wind 

variability is low (e.g., Muller—Karger et al. 2015). As a met-
ric for comparison with MKE and TKE, larval dispersal was 
simulated for modeled spawn during June—August (dispersal 
includes September). This period is a core spawning season 
for several commercially important reef fishes in the north-
ern GOM (Table 1). In addition, MKE and TKE were gener-
ated for winter (December—February) in an effort to see if 
the interannual variations in energetics are due to changes in 
the dynamics or to seasonal shifts.

Simulated larval drift
Simulating the drift of a parcel of water containing larvae 

is relatively straight forward, but complexities occur due to 
uncertainties in both the modeled currents and the behavior 
of larvae as they age. In this study, a base stratagem (defined 
herein as BASE) was devised and applied over the 13 year 
model run. However, variations which may be applicable to 
different life histories were tested on a single year (2015). A 
metric of dispersal, defined as the percent of spawned lar-
vae at each site that are transported off the shelf into water 
deeper than 200 m, serves as the basis for comparison with 
concomitant changes in energy of the slope currents. 

The BASE stratagem assumes that larvae are equally dis-
tributed within the mixed layer (estimated to be the upper 
30 m of the water column). The mixed layer was averaged in 
the vertical from surface to 30 m depth and this temporar-
ily varying 2—D field of currents was used to simulate larval 
drift. Ten larvae were ‘launched’ at each of the 4 selected 
spawning locations (3 in the FGNMS and one in the FMG) 
at 6 day intervals over the months of June through August 
and tracked through the temporally changing model current 
field for a planktonic larval duration (PLD) of 30 days in 
steps of 0.1 day. A Lagrangian Stochastic Model (LSM) was 
applied at each new position along the simulated track of 9 
of the larvae to better describe dispersal of a cloud of larvae. 
The chosen LSM simulates small scale turbulence by an in-
crement (decrement) to the model current components:

δu = 0.1 * S * P
where δu is a turbulence addition to the current component, 
S is speed of the model current and P is a standard normal 

TABLE 1. Spawning seasons of some northern Gulf of Mexico commercially important reef fish.  

Species Common name Spawning  Reference

Lutjanus campechanus Red Snapper Apr—Oct Collins et al. 2001

Lutjanus griseus Gray Snapper Jul—Sep Domeier et al. 1996

Mycteroperca microlepis Gag Feb—April Koenig et al. 1996

Centropristis striata Black Sea Bass Dec—Apr Hood et al. 1994

Rhomboplites aurorubens Vermilion Snapper May—Sep Hood and Johnson 1999

Mycteroperca microlepis Gag Dec—May Hood and Schlieder 1992

Mycteroperca phenax Scamp Late Feb—Jun Coleman et al. 1996

Pagrus pagrus Red Porgy Jan—Apr Hood and Johnson 2000
    

East component:      𝑈𝑈 = �̅�𝑈 + 𝑈𝑈′ 
North component:   𝑉𝑉 = �̅�𝑉 + 𝑉𝑉′  
Where  �̅�𝑈 =  1

𝑇𝑇  ∫ 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇
0 ;   �̅�𝑉 =  1

𝑇𝑇  ∫ 𝑉𝑉𝑈𝑈𝑈𝑈𝑇𝑇
0 ;  𝑇𝑇 = 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑆𝑆𝐽𝐽𝑆𝑆𝑈𝑈𝐽𝐽𝑆𝑆𝑆𝑆𝐽𝐽𝑆𝑆 

MKE =  𝜌𝜌
2 ∑(𝑈𝑈̅̅̅̅ 2 + �̅�𝑉2  )∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 

TKE =  𝜌𝜌
2 ∑(𝑈𝑈′2 +  𝑉𝑉′2)∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧  

ρ is water density and ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 is volume.  
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random variable, applied separately to each component. 
To test the impact of various vertical larval positioning 

schemes, 10 parcels were launched at each of the 4 sites for 
each spawn of the 2015 model year. The percentage of larvae 
lost to the deep—basin (> 200 m) for the following vertical 
position schemes was compared to the BASE scheme:

1. Larvae are only near the surface (5 m).

2. Larvae are only toward the bottom of the mixed layer 
(25 m).

3. Larvae spend 50% of the time at 5 m and 50% at 25 
m (diurnal migration).

4. Larvae descend in 5 m increments from 5 m to 30 m 
depth over the 30 day PLD (ontogeny).

The metric for yearly variations in dispersal was the num-
ber of simulated larvae that were transported offshore and 
ended their 30 day PLD in water depths > 200 m. At this 
point they were defined as ‘lost’ from the shelf although 
some reef species can survive and return to the shelf by active 
motion as juveniles or by seeking temporal habitat in pelagic 
Sargassum (Hoffmayer et al. 2005). A second metric of fishery 
management interest is the retention (juvenile recruitment) 
of larvae in the area of spawn. Natal retention is somewhat 
arbitrarily defined here as reaching the end of PLD within ± 
0.5 degree longitude of FGNMS and ± 0.5 degree latitude of 
FMG and in water with depth ≤ 200 m. Although arbitrary, 
it provides a metric for broadness of dispersal on the shelf 
and its temporal variation.

results

Validation of dispersal algorithm
Using HYCOM currents from 2015, tests were made of 

dispersal using the following turbulence forms (Table 2): (1) 
constant level of turbulence, (2) turbulence proportional to 
current energy (S2) and (3) turbulence proportional to hori-
zontal current shear. The LSM chosen for the BASE case 
produces small scale turbulence that is overall 10% of the 
root—mean—square current speed in the model domain. All 
3 of the tests of turbulence form were structured so that the 
amplitude of the increment is at the level of BASE. A sec-
ond series of tests on dispersal, also using model year 2015, 

was made of turbulence amplitude (Table 3): (1) decrease the 
BASE turbulence increment by a factor of 10, (2) increase by 
a factor of 2 and (3) increase by a factor of 5. Differences in 
the results in both Tables 2 and 3 were not statistically sig-
nificant at p < 0.10 using a Chi—Squared test. 

The largest effect on the FGNMS spawn comes from trial 
#2,, where the larvae remain deep in the mixed layer (Table 
4). The tendency in this case is for retention on the shelf 
with a 12% reduction in larvae lost to the deep basin. The 
largest effect on the FMG spawn comes from trial #1, (larvae 
are only near the surface (5 m)), resulting in a 51% reduction 
in larvae lost to the deep basin although it should be noted 
that the loss from the BASE test was also low at FMG, mak-
ing this impact relatively small. These two trials are both 

significant to p < 0.01 in the Chi—Squared test. Finding little 
impact on dispersal metrics from the trials of turbulent addi-
tions (LSM) and identifying those vertical positioning trials 
(and locations) that do influence outcome, the BASE strata-
gem was used to provide a simple metric of larval dispersal 
for the 13—year period. 

Dispersal
Between 2003 and 2015, modeled larval dispersal changed 

dramatically at both the FGNMS and the FMG sites. Select-
ed years (2003, 2011 and 2015) demonstrated very different 
spatial dispersion patterns in the eastern Gulf compared 
to the western Gulf (Figure 2). In 2003 and 2015, disper-

  

LSM Function FGNMS (%) FMG (%)

BASE 89.8 20.0

CONSTANT 88.5 20.0

SPEED2 89.8 18.8

SHEAR 91.0 18.8

    

TABLE 2. Test of Lagrangian Stochastic Model (LSM) form. Percentage of 
the modeled spawn in 2015 ending the planktonic larval duration in water 
depths > 200 m. The 3 sites in FGNMS are averaged. FGNMS — Flower 
Gardens National Marine Sanctuary; FMG — Florida Middle Grounds.

  

LSM Amplitude FGNMS (%) FMG (%)

STA 89.8 20.0

5 X STA 92.1 15.0

2 X STA 91.0 16.7

0.1 X STA 87.5 20.6

TABLE 3. Test of Lagrangian Stochastic Model (LSM) amplitude. 
Percentage of the modeled spawn in 2015 ending the planktonic larval 
duration in water depths > 200 m. The 3 sites in FGNMS are averaged. 
FGNMS — Flower Gardens National Marine Sanctuary; FMG — Florida 
Middle Grounds.

  

Vertical Position FGNMS(%) FMG(%)

BASE 89.8 21.3

5 m 94.4  9.3 (p<0.01)

30 m 37.9 (p<0.10) 14.4

50% 5 m – 50% 25 m 88.5 21.3

5—30 in 5 m increments 86.0 30.0

TABLE 4. Test of Lagrangian Stochastic Model (LSM) amplitude. 
Percentage of the modeled spawn in 2015 ending the planktonic larval 
duration in water depths > 200 m. The 3 sites in FGNMS are averaged. 
FGNMS — Flower Gardens National Marine Sanctuary; FMG — Florida 
Middle Grounds.
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sal from the FGNMS was predominantly offshore, crossing 
the GOM deep basin to as far as Campeche Bank. In 2011, 
dispersal was predominantly alongshore toward the east. In 
contrast, larvae from the FMG showed remarkably little dis-
persal in 2003 and 2011, but substantial dispersal alongshore 
southward and then offshore in 2015. In general, dispersal 
in all years tended to follow the patterns shown in Figure 2: 
dispersal from the FGNMS was predominantly offshore or 
along—shelf toward the east, while dispersal from the FMG 
was either weak (natal retention) or along—shelf toward the 
south.

The 3 spawn sites in the FGNMS and the single site at the 
FMG showed similar yearly variations in numbers of larvae 
dispersed offshore (Figure 3) with high dispersal at the start 
and end of the 13 year period and low dispersal in a middle 
period (2010—2012). A relatively high correlation (r = 0.673; 
n = 13; lag = 0) between the FMG and the mean of the 3 
FGNMS sites provided a measure of statistical confidence 
(>99%) that the same large scale deterministic processes were 
occurring across the entire northern GOM. Over the 13 year 
model period, dispersal to the deep basin from the FGNMS 
averaged 63.5% with a high of 90.8% and a low of 34.6%; 
dispersal at the FMG averaged 9.5% with a high of 23.1% 
and a low of 0.6%. 

Dispersal of spawn from the FMG was considerably weak-
er than dispersal from the FGNMS and may be related to 
distance from the shelf edge rather than geographic location. 
Plotting the mean percent loss from the FMG together with 
each of the 3 individual sites in FGNMS against distance 
from the shelf edge makes it clear that distance from upper 
slope energy interactions was a major influence on dispersal. 
The nearly linear decrease (Figure 4) was in contradistinc-
tion to posited exponential scaling (internal Rossby radius 
of deformation), suggesting a more complex scaling would be 
necessary to match the complex hydrography. Overall, aver-
age loss of larvae spawned at the 3 sites of the FGNMS was 
high compared to loss from FMG (Figure 3, Tables 2—4). The 
high annual variation in larval loss was unexpected. For ex-
ample, at WFG bank, nearest of the FGNMS banks to the 
shelf edge, the annual loss (see Figure 3) ranged from 92.5% 
in 2003 to a low of 37% in 2011, returning to a high of 97.5% 
in 2015.

Of considerable interest is the quantity of larvae taken 
offshore and transported to other regions of the Gulf. Of 
the total yearly spawn, 4.4% (± 2.6%) were taken beyond the 
upper slope region (200 – 1000 m) into the deep basin and 
returned onto the shelf where they ended their PLD in water 
< 200 m deep. Larvae transported in this manner provide 
a modest level of connectivity and genetic homogenization 
over much of the Gulf. Most of the returned spawn came 
from the FGNMS; only 0.87% of spawn from FMG were 
returned to the shelf although many were streamed out of the 
GOM and may have grounded along the Atlantic coastline. 

FIGURE 2. Examples of larval dispersal from Flower Gardens National 
Marine Sanctuary (FGNMS) and Florida Middle Grounds (FMG). Red 
dots: daily positions along all tracks. Blue dots: locations of larvae from 
FGNMS at end of planktonic larval duration (PLD). Green dots: locations 
of larvae from FMG at end of PLD. Upper, model year 2003; Middle, 
model year 2011; lower, model year 2015. 
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Larvae returned to the shelf in this manner were not counted 
in the percentage lost to the basin.

Natal retention is also of interest. For the FGNMS, natal 
retention averaged 15.2% for the 13 year period with a high 
of 32.9% and a low of 1.9%. For FMG, natal retention aver-
aged 41.0% with a high of 86.9% and a low of 12.5%. Of 
equal interest are the overall trends of natal retention. For 
the FGNMS, natal retention decreased (linear fit) by 1% per 
year and FMG decreased by 1.3% per year for the period  
of study.

Energy on the upper slope
The strong spatial and temporal variations in dispersal 

patterns of outer shelf reef fish larvae in the northern GOM 
were the result of variations in ocean current energy over 
the upper continental slope. The TKE over the upper slope 
(attributed principally to spin—off eddies) and the MKE (at-
tributed to seasonal upper slope currents) showed decadal 
scale trends with opposite tendencies (Figure 5). At both the 
FGNMS and FMG sites, TKE decreased over the 13 year 
period while MKE increased. The cross—over point where 
MKE reached the same level as TKE occurred in 2011 when 
percent loss trends (see Figure 3) changed tendencies from 
decreasing to increasing. 

Upper continental slope currents in the northern GOM, 
from which the MKE is formed, were predominantly clock-
wise with a relatively strong increase in distribution and 
intensity around the entire GOM between 2003 and 2015 
(Figure 6). Distribution of TKE and MKE on the upper slope 
also showed considerable differences between 2003 and 2015 
(Figure 7), especially in the northern GOM. Inflow on the 
western side of the Yucatan Channel and outflow along the 
Florida Keys were linked to strong TKE and MKE over the 
adjacent slopes throughout the period (Figure 7). Over the 
13 year period, energy along the upper slope of the northern 
GOM changed from predominantly TKE to predominantly 
MKE. The change—over time frame (2010—2012) from TKE 
to MKE coincided with the change of trend from decreasing 
to increasing larval dispersal.

FIGURE 3. Time series of reef fish larvae dispersed off the continental shelf 
(% lost) for each model year in summer (June—September) from 2003 to 
2015. Black, % lost from West Flower Gardens Bank; Blue, % lost from East 
Flower Gardens Bank; Green, % lost from Stetson Bank; Dashed, % lost 
from Florida Middle Grounds (FMG); Red horizontal bars, means of Flower 
Gardens National Marine Sanctuary (FGNMS, upper) and FMG (lower). 

FIGURE 4. Decreasing impact of upper continental slope energy with dis-
tance from the shelf break. Percent lost at each site is the summer mean over 
the 13 year period. Red line is a linear fit. WFG—West Flower Gardens Bank; 
EFG—East Flower Gardens Bank; ST—Stetson Bank; FMG—Florida Middle 
Grounds.

FIGURE 5. Time series of current energy over upper continental slope 
fronting sites for each model year in summer (June—September) from 2003 
to 2015. A. Flower Gardens National Marine Sanctuary. B. Florida Mid-
dle Grounds. Solid line, turbulent kinetic energy (TKE); dashed line, kinetic 
energy of the mean (MKE).

A

B
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dIscussIon 
This study examined decadal scale changes in the kinetic 

energy of upper layer continental slope currents of the north-
ern GOM and the resulting changes in dispersal of reef fish 
larvae spawned on the outer shelf. The FGNMS and FMG 
were chosen as spawn sites because of their importance to 
fisheries and fishery management and because of their lo-
cations with respect to LC spin—off eddies and distance to 

the continental shelf edge; Hare et al. (2002) suggested lar-
vae can settle in suitable habitat after re—crossing the shelf 
break. Data assimilated model currents (13 year period, 
2003—2015) from HYCOM were averaged over 30 m depth 
(estimated mixed layer depth) and used for determination of 
larval dispersal and calculations of kinetic energy. 

Simulated larvae were tracked from the spawn sites us-
ing a base case algorithm that incorporated a simple LSM, a 
PLD of 30 days and larval distribution throughout the mixed 
layer. Changes to the LSM and vertical distribution were ex-
amined to determine if changes from the base case would 
fundamentally alter the metrics used for larval dispersal. It 
was found that there was insignificant impact except for two 
cases. There was better retention on the shelf from larvae 
spawned in the FGNMS if they stayed at the bottom of the 
mixed layer and better retention from larvae spawned in the 
FMG if they stayed at the top of the mixed layer. This mixed 
result suggests that care must be taken in applying the met-
rics of this study to some species and to specific locations. 

Larval dispersal and eddy energy (TKE) along the northern 
GOM continental slope underwent considerable change over 
the study period. As dispersal to the deep basin decreased 
from 2003 to 2011, so did TKE as would be expected. How-
ever, between 2011 and 2015, dispersal to the deep basin in-
creased back to its 2003 level while TKE remained low. The 
increase in dispersal between 2011 and 2015 corresponded 
to a concomitant increase in ambient (seasonal) along—slope 
current energy (MKE). This was unexpected and not com-
monly considered as important to water exchanges between 
the shelf and the deep basin. However, ambient slope cur-
rents (MKE) were averaged over a four month period, blur-
ring larval entrainment and cross isobath transport on short 
time scales. Submesoscale processes (Luo et al. 2016) may be 
important at the shelf break, but will not be captured within 
the scales of this study.

An anticyclonic along—slope flow in the GOM has long 
been recognized. It is a consequence of the negative wind 
stress curl over much of the Gulf (Gutierrez de Velasco and 
Winant 1996, Ohlmann et al. 2001) and is enhanced by LC 
anticyclonic eddies that interact with the northern shelf. As 
LC eddies decay during westward migration, energy can be 
transferred (Hallock et al. 2009) into low frequency currents 
along the slope region, but it also interrupts the along—slope 
current along the northern boundary. The transition from 
TKE to MKE could just as easily be described as a restora-
tion of the ambient wind—driven slope current due to weaker 
interactions of LC eddies along the northern boundary.

Summer was chosen for the principal season of study be-
cause it is a core spawning season for many reef fish species, 
and ambient summer wind forcing with low mean and low 
variance suggests that high current energy over the slope is 
likely due to spin—off eddies. However, the possibility that 
change in TKE during the study period was related to the 
seasonal shift from summer eddy spin—off must be consid-
ered. Although not synchronized with season, most spin—off 
eddy separations from the LC occur in summer and winter 
(Vukovich 2012). For comparison the TKE was calculated for 
winter. A similar decreasing trend occurred during winter 
(Figure 8) suggesting that the time scale associated with the 

FIGURE 6. Mean upper continental slope current vectors for the summer 
of 2003 (upper) and 2015 (lower).
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changes is indeed decadal and not simply due to inter—sea-
sonal shifts.

Penetration depth of the LC into the northern GOM (be-
fore eddy spin—off) and the subsequent eddy pathway west-
ward are key factors (Vukovich 2007) in upper slope ener-
getics, but are not fully understood. If an eddy breaks off 
early, its path westward may not include interactions with 
the northern shelf although its decay along the western shelf 
can contribute to the anticyclonic slope current. It has been 
recognized that variations in penetration of the LC can be 
linked to changes in volume transport through the Yucatan 
Channel (Molinare et al. 1978, Oey et al. 2003, Chang and 
Oey 2012). Yucatan Channel inflow to the GOM is part of 
the North Atlantic western boundary current system com-

posed of contributions from the North Atlantic Subtropical 
Gyre and the Atlantic Meridional Overturning Circulation 
(AMOC; Atlantic limb of the global ocean conveyor belt) 
(Johns et al. 2002). Observations of a decreasing AMOC 
since 2004 (Robson et al. 2014, Smeed et al. 2014) lead to ex-
pectations of a decreasing western boundary current system 
(Liu et al. 2012, Park and Sweet 2015), including Yucatan 
Channel inflow. 

Several studies (Muller—Karger et al. 2015; Karnauska et 
al. 2015) have linked trends in oceanographic conditions and 
large scale ecosystems shifts in the offshore GOM to decadal 
trends in the sea surface temperature (SST) of the North 
Atlantic using the Atlantic Multi—decadal Oscillation index 
(detrended basin wide SST; Enfield et al. 2001). The sug-

FIGURE 7. Distribution of upper continental slope current energy for 2003 (upper) and 2015 (lower); left column is turbulent kinetic energy (TKE) and 
right column is kinetic energy of the mean (MKE). Blue grid points correspond to areas where mean currents exceed 0.2 m/s; red grid points correspond 
to areas where mean currents exceed 0.3 m/s.
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gested explanation considers a link between the AMOC and 
heat transport into the North Atlantic. Concomitant with 
the decreasing AMOC has been a downward trend in the 
North Atlantic Oscillation (NAO) index (Smeed et al. 2013), 

a measure of surface air pressure gradient and, thus, surface 
geostrophic winds. The NAO is a relatively simple, well moni-
tored, surrogate for a complex system with many driving com-
ponents. A simple correlation between the NAO and percent 
of larvae lost from the combined WFG and EFG spawning 
sites (nearest shelf edge) with a lag of one year (NAO lead-
ing) was significant (r = 0.72, n = 12). The lag considers the 
propagation time for storm generated ocean Rossby waves to 
impact the western boundary current system although propa-
gation time from different distances across the North Atlan-
tic tends to smear the impact over several years (DiNezio et 
al. 2009). 

It is suggested that large scale climate processes are funda-
mentally accountable for driving strong dispersal and strong 
inter—annual variation in dispersal of outer shelf reef fish lar-
vae, and that these processes vary with changing climate. For 
fishery management, it is important to document environ-
mental factors that can significantly impact stock enhance-
ment efforts and how these factors vary over time.

FIGURE 8. Comparison of turbulent kinetic energy at Flower Gardens 
National Marine Sanctuary between summer (solid) and winter (dashed).
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